

Pyrolysis Process for Conversion of Biomass into Energy Products

Ralph Coates, Eric Eddings, Benjamin Coates, Dallas Hanks

Amaron Energy

Presented By Robert Bell Energy Commercialization Center

Utah Governor's Energy Development Summit January 11, 2013

Biofuel Production Via Fast Pyrolysis

Fast Pyrolysis

⁷Heat in absence of

oxygen. High heating

rates and lower

temperatures

maximizes oil

production.

Can recycle

gas as energy

input to

pyrolysis unit

Pyrolysis Products

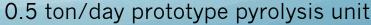
Fuel Oil

Replacement

Electricity, Steam/

Heat Production

Bio-Char


Pyrolysis Gas Formulation of
Transportation Fuels
Green Diesel, Gasoline &
Jet Fuel

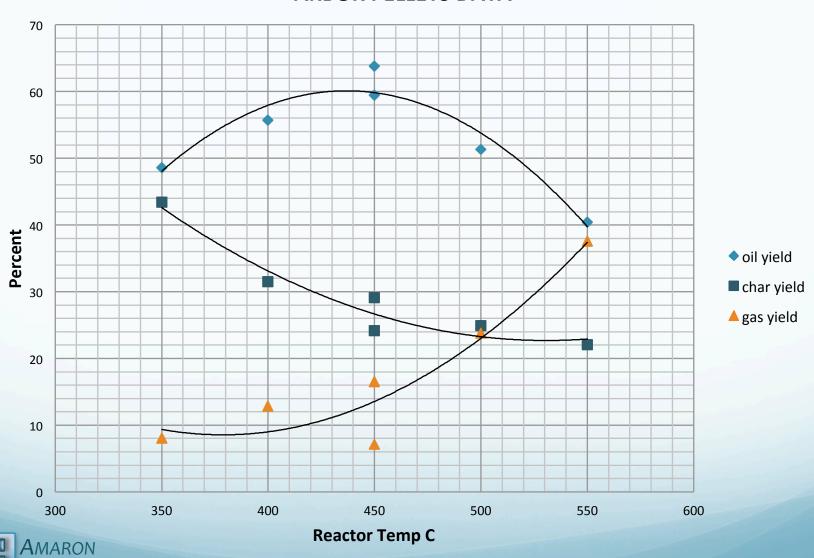
Soil amendment, CO2 sequestration

Amaron Energy's Advanced Portable Pyrolysis Unit*

- Prototype operating unit ½ ton/ day capacity
- 3 years of operation and data collection
- 14 feed stocks tested
- Robust feedstock acceptance
- In design phase for 10 ton/day demonstration scale unit
- * US Patent 8,298,498 B2 Method and apparatus for achieving fast pyrolysis in indirectly heated rotary reactors
- * US Patent Application US2012/0063965 A1 Method and apparatus for fast pyrolysis of biomass in a rotary kiln

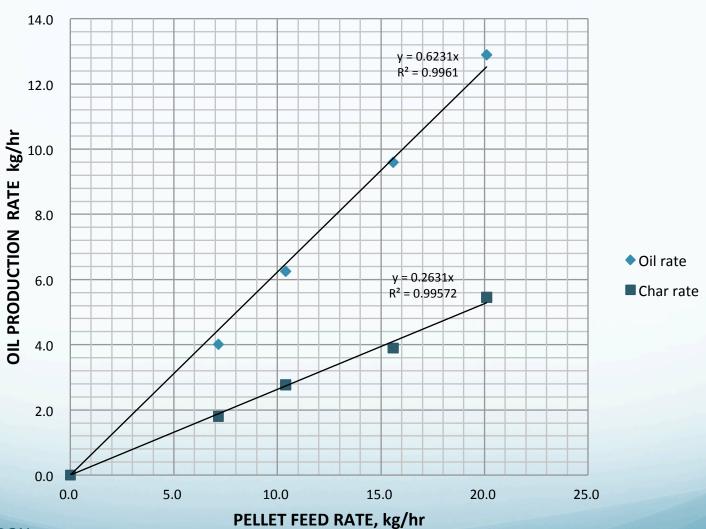
Products Produced through Pyrolysis

- Bio Oil
 - Could be used as petroleum boiler fuel replacement
 - Potential for drop in fuel feedstock after upgrading
- Bio Char
 - Reclamation
 - Filtration Media
 - Bio Coal
- Electrical Power
 - Use of pyrolysis gas in generator


Product Yields Obtained with 0.5 ton/hr Amaron Energy Prototype Unit

Material	Test hrs	Typical yields %			Typical C1 oil HHV	
		Oil	Char	Gas	BTU/lb	
Pinion-Juniper wood	176	59	30	11	10,291	torrefied
Black Liquor	169	37	38	25		
Fir pellets	132	62	23	16	7,620	
Fir fines	112	59	19	22		
Lemna	47	44	28	28	11,383	
Pine shredded	16	58	30	12	6,851	
Pine bark	3	34	36	30		
MSW sorted	12	54	15	31	17,019	
Brown Grease	12	53	2	45	18,188	
Tire rubber	10	31	42	27	17,135	
Phragmites	10	28	36	36		
Turkey litter	6	46	35	19	3,695	
Aspen	4	43	28	29		
USU Algae	2	25	51	24		
Total test hours	710					

VARIATION OF YIELDS Δ T


ARBOR PELLETS DATA

ENERGY

VARIATION OF YIELDS Δ Rate

ARBOR PELLET DATA

Business Case & Competitive Advantages

- Mobile pyrolysis unit available to serve nontraditional markets
 - Bio-Oils renewable source of energy from waste feedstock
 - Bio-Char remediation, polluted locations to amend soil
 - Activated Carbon could play in Mobile& local market
 - Remote Location and Secure Location Access (Next Slide)
- Advantages of rotary reactor
 - Fluidizied bed equipment not required (lower CapEx)
 - Bio-Char cooling heat recovery
 - High quality Bio-Char

AMARON

Research and Development Associates and Customers

- Washakie Renewable Energy
- Tooele Army Depot
- University of Utah
- Utah State University
- Utah Biomass Resources Group
- Washington State University

Milestones & Ask

- Manufacture 20 inch (10 ton/ day)
 mobile unit
 - Using a 40 foot shipping container
 - Est. Completion mid 2013

\$400,000 and about 6 months

Questions?

www.AmaronEnergy.com

ralph@amaronenergy.com

Or

www.ECC.Utah.Edu

